What is the limit? #lim_(theta->0)(tan(3theta^2)+sin^2 5theta)/(theta^2)# and #lim_(x->oo)(cos(pi/x))/(x-2)#
1 Answer
# lim_(theta rarr 0)(tan(3 theta^2)+sin^2 5 theta)/(theta^2) = 28 #
# lim_(x rarr oo)cos(pi/x)/(x-2) = 0#
Explanation:
We can start by using some standard, well defined elementary calculus limits. (all trig function evaluated in radians):
# {: (ul("Limit"), ul("Expression"), ul("Result"), ul("Notes")), (A, lim_(theta rarr 0) A+B, =lim_(theta rarr 0) A+lim_(theta rarr 0) B,), (B, lim_(theta rarr 0) AB, =lim_(theta rarr 0) A * lim_(theta rarr 0) B,), (C, lim_(theta rarr 0) sin theta, =0,"Direct Evaluation"), (D, lim_(theta rarr 0) cos theta, =1,"Direct Evaluation"), (E, lim_(theta rarr 0) (sin theta)/theta, =1,"Should be learnt"), (F, lim_(theta rarr 0) (1-cos theta)/theta, =0,"Should be learnt"), (G, lim_(theta rarr 0) (tan theta)/theta, =1,) :} #
Limit 1:
We seek:
# L_1 = lim_(theta rarr 0)(tan(3 theta^2)+sin^2 5 theta)/(theta^2) #
We first note that we cannot evaluate the limit directly as we get an indeterminate form
# L_1 = lim_(theta->0) {tan(3 theta^2)/(theta^2)+sin^2 (5 theta)/(theta^2)} #
# \ \ \ \ = lim_(theta rarr 0) {tan(3 theta^2)/(theta^2) * 3/3 + sin (5 theta)/(theta) * sin (5 theta)/(theta) * 5/5 * 5/5} #
# \ \ \ \ = lim_(theta rarr 0) {(3 tan(3 theta^2))/(3 theta^2) + (5 sin (5 theta))/(5 theta) * (5 sin (5 theta))/(5 theta) } #
Using
# L_1 = 3 lim_(theta rarr 0) (tan(3 theta^2))/(3 theta^2) + 5 lim_(theta rarr 0) (sin (5 theta))/(5 theta) * 5 lim_(theta rarr 0) (sin (5 theta))/(5 theta) #
And each remaining limit is in the standard form required by
# L_1 = 3 * 1 + 5 * 1 * 5 * 1 #
# \ \ \ \ = 3 + 25 #
# \ \ \ \ = 28 #
Limit 2:
We seek:
# L_2 = lim_(x rarr oo)cos(pi/x)/(x-2) #
We can manipulate the limit, in preparation for a substitution:
# L_2 = lim_(x rarr oo)cos(pi/x)/(x-2) * (1/x)/(1/x)#
# \ \ \ \ = lim_(x rarr oo) (1/x cos(pi * 1/x)) /(1-2/x) #
Let us now perform a substitution
# L_2 = lim_(u rarr 0) (u cos(pi * u)) /(1-u) #
# \ \ \ \ = lim_(u rarr 0) cos(pi u) * u /(1-u) #
# \ \ \ \ = lim_(u rarr 0) cos(pi u) * lim_(u rarr 0) u /(1-u) #
Both of these limits can be evaluated by direct substitution, thus:
# L_2 = cos(0) * 0 /(1-0) #
# \ \ \ \ = 0 #
Note 1:
The tangent limit.
# lim_(theta rarr 0) (tan theta)/theta = lim_(theta rarr 0) (sin theta)/(cos theta) * 1/theta#
# " " = lim_(theta rarr 0) (sin theta)/(cos theta) * 1/theta#
# " " = lim_(theta rarr 0) 1/(cos theta) * (sin theta)/theta#
# " " = 1 * 1 #