How do you find the derivative of f(x) = 1/sqrt(2x-1) by first principles?

2 Answers
Mar 30, 2016

derivative of function to a power -1/2 2(2x-1)^(-1/2-1)

Explanation:

f(x) = (2x-1)
You want the derivative of f to the power -1/2
Chain rule
-1/2 2(2x-1)^(-1/2-1)

The factor 2 comes from the derivative of f itself

Mar 30, 2016

Use limit definition of derivative to find:

f'(x) = -(2x-1)^(-3/2)

Explanation:

f(x) = 1/sqrt(2x-1)

f'(a) = lim_(h->0) (f(a+h) - f(a))/h

=lim_(h->0) (1/sqrt(2a+2h-1) - 1/sqrt(2a-1))/h

=lim_(h->0) (sqrt(2a-1)-sqrt(2a+2h-1))/(h sqrt(2a+2h-1) sqrt(2a-1))

=lim_(h->0) ((sqrt(2a-1)-sqrt(2a+2h-1))(sqrt(2a-1)+sqrt(2a+2h-1)))/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))

=lim_(h->0) ((2a-1)-(2a+2h-1))/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))

=lim_(h->0) (-2h)/(h sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))

=lim_(h->0) (-2)/(sqrt(2a+2h-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a+2h-1)))

=(-2)/(sqrt(2a-1) sqrt(2a-1) (sqrt(2a-1)+sqrt(2a-1)))

=(-1)/((2a-1)^(3/2))

=-(2a-1)^(-3/2)

So:

f'(x) = -(2x-1)^(-3/2)