Find the derivative of sinx using First Principles?

2 Answers
Nov 21, 2016

By definition of the derivative f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So with f(x) = sinx we have;

f'(x)=lim_(h rarr 0) ( sin(x+h) - sin x ) / h

Using sin (A+B)=sinAcosB+sinBcosA we get

f'(x)=lim_(h rarr 0) ( sinxcos h+sin hcosx - sin x ) / h
f'(x)=lim_(h rarr 0) ( sinx(cos h-1)+sin hcosx ) / h
f'(x)=lim_(h rarr 0) ( (sinx(cos h-1))/h+(sin hcosx) / h )

f'(x)=lim_(h rarr 0) (sinx(cos h-1))/h+lim_(h rarr 0)(sin hcosx) / h

f'(x)=(sinx)lim_(h rarr 0) (cos h-1)/h+(cosx)lim_(h rarr 0)(sin h) / h

We know have to rely on some standard limits:

lim_(h rarr 0)sin h/h =1
lim_(h rarr 0)(cos h-1)/h =0

And so using these we have:

f'(x)=0+(cosx)(1) =cosx

Hence,

d/dxsinx=cosx