First Principles Example 1: x²

Key Questions

  • First Principles -> Difference Quotient

    f'(x)=lim_(h->0)(f(x+h)-f(x))/h

    f(x)=x^2+7x-4

    f(x+h)=(x+h)^2+7(x+h)-4

    f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-(x^2+7x-4))/h

    f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-x^2-7x+4)/h

    f'(x)=lim_(h->0)((x+h)^2+7x+7h-4-x^2-7x+4)/h

    f'(x)=lim_(h->0)(x^2+2xh+h^2+7x+7h-4-x^2-7x+4)/h

    f'(x)=lim_(h->0)(2xh+h^2+7h)/h

    f'(x)=lim_(h->0)(h(2x+h+7))/h

    f'(x)=lim_(h->0)(2x+h+7)

    f'(x)=2x+(0)+7

    f'(x)=2x+7

  • Answer:

    f'(x)=2x

    Explanation:

    f'(x)=lim_(hto0)(f(x+h)-f(x))/h

    rArrf'(x)=lim_(hto0)((x+h)^2-x^2)/h

    color(white)(rArrf'(x))=lim_(hto0)(cancel(x^2)+2hx+h^2cancel(-x^2))/h

    color(white)(rArrf'(x))=lim_(hto0)(cancel(h)(2x+h))/cancel(h)

    color(white)(rArrf'(x))=2x

Questions