First Principles Example 1: x²
Key Questions
-
First Principles
-> Difference Quotientf'(x)=lim_(h->0)(f(x+h)-f(x))/h f(x)=x^2+7x-4 f(x+h)=(x+h)^2+7(x+h)-4 f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-(x^2+7x-4))/h f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-x^2-7x+4)/h f'(x)=lim_(h->0)((x+h)^2+7x+7h-4-x^2-7x+4)/h f'(x)=lim_(h->0)(x^2+2xh+h^2+7x+7h-4-x^2-7x+4)/h f'(x)=lim_(h->0)(2xh+h^2+7h)/h f'(x)=lim_(h->0)(h(2x+h+7))/h f'(x)=lim_(h->0)(2x+h+7) f'(x)=2x+(0)+7 f'(x)=2x+7 -
Answer:
f'(x)=2x Explanation:
f'(x)=lim_(hto0)(f(x+h)-f(x))/h rArrf'(x)=lim_(hto0)((x+h)^2-x^2)/h color(white)(rArrf'(x))=lim_(hto0)(cancel(x^2)+2hx+h^2cancel(-x^2))/h color(white)(rArrf'(x))=lim_(hto0)(cancel(h)(2x+h))/cancel(h) color(white)(rArrf'(x))=2x
Questions
Derivatives
-
Tangent Line to a Curve
-
Normal Line to a Tangent
-
Slope of a Curve at a Point
-
Average Velocity
-
Instantaneous Velocity
-
Limit Definition of Derivative
-
First Principles Example 1: x²
-
First Principles Example 2: x³
-
First Principles Example 3: square root of x
-
Standard Notation and Terminology
-
Differentiable vs. Non-differentiable Functions
-
Rate of Change of a Function
-
Average Rate of Change Over an Interval
-
Instantaneous Rate of Change at a Point