Find the derivative of x+sqrtx using the definition of derivative?

1 Answer
Apr 14, 2017

d/(dx)(x+sqrtx)=1+1/(2sqrtx)

Explanation:

(df)/(dx) is defined as Lt_(h->0)(f(x+h)-f(x))/h

Here f(x)=x+sqrtx and hence

f(x+h)=x+h+sqrt(x+h) and

f(x+h)-f(x)=h+sqrt(x+h)-sqrtx and hence

(df)/(dx)=Lt_(h->0)[1+(sqrt(x+h)-sqrtx)/h]

= 1+Lt_(h->0)((sqrt(x+h)-sqrtx)(sqrt(x+h)+sqrtx))/(h(sqrt(x+h)+sqrtx))

= 1+Lt_(h->0)h/(h(sqrt(x+h)+sqrtx))

= 1+Lt_(h->0)1/(sqrt(x+h)+sqrtx)

= 1+1/(2sqrtx)