How do we find the differential of y=x^2+1 from first principle?

1 Answer
Mar 19, 2017

(dy)/(dx)=2x-2

Explanation:

According to fist principle, if y=f(x)

then (dy)/(dx)=Lt_(h->0)(f(x+h)-f(x))/h

Here f(x)=(x-1)^2+1

therefore f(x+h)=(x+h-1)^2+1

and f(x+h)-f(x)

= (x+h-1)^2+1-(x-1)^2+1

= (x+h-1)^2-(x-1)^2

= (x+h-1+x-1)(x+h-1-x+1)
- using a^2-b^2=(a+b)(a-b)

= h(2x+h-2)

and (dy)/(dx)=Lt_(h->0)(h(2x+h-2))/h

= Lt_(h->0)(2x+h-2)

= 2x-2