Calculate the derivative of y = (x^2+2)^2(x^4+4)^4 using logarithms?

1 Answer
Nov 22, 2016

dy/dx = (4x) ( 5x^4 + 8x^2 + 4 ) (x^2+2)(x^4+4)^3

Explanation:

y = (x^2+2)^2(x^4+4)^4

Taking Natural Logarithms:

ln y = ln {(x^2+2)^2(x^4+4)^4}
:. ln y = ln (x^2+2)^2 + ln (x^4+4)^4
:. ln y = 2ln (x^2+2) + 4ln (x^4+4)

Differentiating we get:
1/ydy/dx = 2 (2x)/(x^2+2) + 4 (4x^3)/(x^4+4)

Simplifying;
1/ydy/dx = (4x) { 1/(x^2+2) + (4x^2)/(x^4+4) }
:. 1/ydy/dx = (4x) { ( (x^4+4) + 4x^2(x^2+2) )/( (x^2+2)(x^4+4) ) }
:. 1/ydy/dx = (4x) { ( x^4+4 + 4x^4 + 8x^2 )/( (x^2+2)(x^4+4) ) }
:. 1/ydy/dx = (4x) { ( 5x^4 + 8x^2 + 4 )/( (x^2+2)(x^4+4) ) }
:. dy/dx = (4x) { ( 5x^4 + 8x^2 + 4 )/( (x^2+2)(x^4+4) ) } y
:. dy/dx = (4x) { ( 5x^4 + 8x^2 + 4 )/( (x^2+2)(x^4+4) ) } (x^2+2)^2(x^4+4)^4
:. dy/dx = (4x) ( 5x^4 + 8x^2 + 4 ) (x^2+2)(x^4+4)^3