Question #e8ba4

1 Answer
Jan 24, 2017

d/(dx) (sinx)^tanx = (sinx)^tanx (ln (sinx)/cos^2x +1)ddx(sinx)tanx=(sinx)tanx(ln(sinx)cos2x+1)

Explanation:

In cases like this the easiest approach is to pass through logarithms:

(sinx)^tanx = (e^ln (sinx) )^tanx = e^(tanx*ln(sinx))(sinx)tanx=(eln(sinx))tanx=etanxln(sinx)

so:

d/(dx) (sinx)^tanx = e^(tanx*ln(sinx))* d/dx(tanx*ln(sinx))ddx(sinx)tanx=etanxln(sinx)ddx(tanxln(sinx))

d/(dx) (sinx)^tanx = (sinx)^tanx (ln (sinx)/cos^2x + tanx cosx/sinx)ddx(sinx)tanx=(sinx)tanx(ln(sinx)cos2x+tanxcosxsinx)

d/(dx) (sinx)^tanx = (sinx)^tanx (ln (sinx)/cos^2x +1)ddx(sinx)tanx=(sinx)tanx(ln(sinx)cos2x+1)