How do you change 2 \sin 7x \cos 4x into a sum?

1 Answer
May 23, 2018

sin 11x + sin 3x

Explanation:

f(x) = 2cos 4x. sin 7x
Note that sin 7x = cos (pi/2 - 7x) (complementary arcs)
f(x) = 2 cos 4x.cos (pi/2 - 7x)
Reminder of trig identity:
2cos a.cos b = cos (a - b) + cos (a + b)
In this case:
a - b = 4x - (pi/2 - 7x) = 11x - pi/2
a + b = 4x + pi/2 - 7x = pi/2 - 3x
f(x) = cos (11x - pi2) + cos (pi/2 - 3x) = cos (pi/2 - 11x) + sin 3x
f(x) = sin 11x + sin 3x (complementary arcs)