How do you derive the multiple angles formula?

1 Answer
Apr 12, 2015

One approach is to use repeated applications of the sum formulas.

trig(2a) = trig (a+a)trig(2a)=trig(a+a)

trig(3a) = trig (2a+a)trig(3a)=trig(2a+a)

trig(4a) = trig (3a+a)trig(4a)=trig(3a+a) (or =trig(2a+2a)=trig(2a+2a))

Another approach is to rewrite using Euler's Formula: e^(i n x) = cos(nx)+i sin(nx)einx=cos(nx)+isin(nx)

So sin(nx) = (e^( i n x) - e^( - i n x))/(2 i) = ((e^( i x))^n - (e^( - i x))^n)/(2 i)sin(nx)=einxeinx2i=(eix)n(eix)n2i

= ((cosx+isinx)^n - (cosx-isinx)^n)/(2 i)=(cosx+isinx)n(cosxisinx)n2i.

Now expand using the binomial theorem, and simplify.

Here's an outside link with the details:

Multiple Angle Formulas