How do you simplify sin^2theta-cos^2theta+tan^2theta to non-exponential trigonometric functions?

1 Answer
Jul 8, 2016

The given expression

=sin^2theta-cos^2theta+tan^2theta

=-(cos^2theta-sin^2theta)+sin^2theta/cos^2theta

Now recalling the identities

(cos^2theta-sin^2theta)=cos2theta

sin^2theta=1/2(1-cos2theta)

cos^2theta=1/2(1+cos2theta)

The given expression becomes

=-cos2theta+(1/2(1-cos2theta))/(1/2(1+cos2theta))

=(-cos2theta-cos^2 2theta+1-cos2theta)/(1+cos2theta)

=(1-2cos2theta-1/2(1+cos4theta))/(1+cos2theta)

=(1/2-2cos2theta-1/2cos4theta)/(1+cos2theta)

=(1-4cos2theta-cos4theta)/(2(1+cos2theta))