How do you use the sum and double angle identities to find sin3x?

1 Answer
Apr 26, 2015

Since the angle sum formula of sinus:

sin(alpha+beta)=sinalphacosbeta+cosalphasinbetasin(α+β)=sinαcosβ+cosαsinβ,

and the double angle formula of cosine:

cos2alpha=cos^2alpha-sin^2alpha=2cos^2alpha-1=1-2sin^2alphacos2α=cos2αsin2α=2cos2α1=12sin2α

than:

sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=

=2sinxcosx*cosx+(1-2sin^2x)sinx==2sinxcosxcosx+(12sin2x)sinx=

=2sinxcos^2x+sinx-2sin^3x==2sinxcos2x+sinx2sin3x=

=2sinx(1-sin^2x)+sinx-2sin^3x==2sinx(1sin2x)+sinx2sin3x=

=2sinx-2sin^3x+sinx-2sin^3x==2sinx2sin3x+sinx2sin3x=

=3sinx-4sin^3x=3sinx4sin3x.