How do you differentiate ((e^x)+x)^(1/x)?

1 Answer
Feb 16, 2017

d/dx (e^x+x)^(1/x)= (e^x+x)^(1/x){ (e^x+1)/(x(e^x+x)) -(ln(e^x+x))/x^2 }

Explanation:

The best approach here is to use logarithmic differentiation to remove the variable exponent, as follows:

Let y = (e^x+x)^(1/x)

=> ln \ y = ln \ {(e^x+x)^(1/x)}
" "= 1/x \ ln(e^x+x)

We can now differentiate the LHS implicitly, and the RHS using the product rule to get:

\ \ \ \ \ 1/y \ dy/dx = (1/x)(d/dx ln(e^x+x)) +(d/dx 1/x)(ln(e^x+x))
:. 1/y \ dy/dx = (1/x)( 1/(e^x+x) * (e^x+1))) +(-1/x^2)(ln(e^x+x))
:. 1/y \ dy/dx = (e^x+1)/(x(e^x+x)) -(ln(e^x+x))/x^2
:. dy/dx = (e^x+x)^(1/x){ (e^x+1)/(x(e^x+x)) -(ln(e^x+x))/x^2 }