How do you differentiate f(x)=23^xf(x)=23x?

1 Answer
Mar 8, 2017

d/(dx) 23^x = 23^x ln 23ddx23x=23xln23

Explanation:

Use:

23 = e^ln(23)23=eln(23)

(a^b)^c = a^(bc)" "(ab)c=abc when a > 0a>0

d/(dx) e^x = e^xddxex=ex

d/(dx) u(v(x)) = u'(v(x))*v'(x)

So:

d/(dx) 23^x = d/(dx) (e^(ln 23))^x = d/(dx) e^((ln 23)x) = e^((ln 23) x) ln 23 = 23^x ln 23