How do you differentiate y=(1+x)^(1/x)?

2 Answers
Mar 31, 2017

dy/dx = (1+x)^(1/x) {1/(x(1+x)) - ln(1+x)/x^2}

Explanation:

We have:

y = (1+x)^(1/x)

First note that the function is not defined when x=0. We can take (natural) logarithms of both sides to get:

lny = ln{(1+x)^(1/x)}
" " = 1/x \ ln(1+x)
" " = ln(1+x)/x

Differentiating implicitly and applying the quotient rule and the chain rule gives:

1/y dy/dx = { (x)(1/(1+x)) - (ln(1+x))(1) } / (x)^2
" " = { x/(1+x) - ln(1+x) } / (x)^2
" " = 1/(x(1+x)) - ln(1+x)/x^2

And so:

dy/dx = y {1/(x(1+x)) - ln(1+x)/x^2}
" " = (1+x)^(1/x) {1/(x(1+x)) - ln(1+x)/x^2}

Mar 31, 2017

The answer is =(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)

Explanation:

We diiferentiate using logs.

y=(1+x)^(1/x)

ln(y)=ln((1+x)^(1/x))

lny=1/x*ln(1+x)

Differentiating

(lny)'=(1/x*ln(1+x))'

1/y*dy/dx=1/x*1/(1+x)-1/x^2*ln(1+x)

dy/dx=y(1/(x(1+x))-1/x^2ln(1+x))

dy/dx=(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)