How do you differentiate y= 10^ (tan (pi)(theta)?

1 Answer
Jan 18, 2017

dy/(dθ) = 10^tan(πθ) (πln(tan(πθ))) /cos^2(πθ)

Explanation:

Let v = πθ and u = tanv.
Using the chain rule, dy/(dθ) = dy/(du) (du)/(dv) (dv)/(dθ)

So now, y = 10^u, so:

dy/(dθ) = 10^u lnu * 1/cos^2(v) * π

= 10^tan(πθ) (πln(tan(πθ))) /cos^2(πθ)