How do you differentiate y=(2^x-x^2)/(1-log_3x)?
1 Answer
Jun 10, 2017
Explanation:
color(orange)"Reminders"
• d/dx(a^x)=a^xlna
• d/dx(log_ax)=1/(xlna)
"differentiate using the "color(blue)"quotient rule"
"Given " y=(g(x))/(h(x))" then"
dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"
"g(x)=2^x-x^2rArrg'(x)=2^xln2-2x
h(x)=1-log_3xrArrh'(x)=-1/(xln3)
rArrdy/dx=((1-log_3x)(2^xln2-2x)-(2^x-x^2)(-1/(xln3)))/(1-log_3x)^2