How do you differentiate y=(2^x-x^2)/(1-log_3x)?

1 Answer
Jun 10, 2017

dy/dx=((1-log_3x)(2^xln2-2x)+(2^x-x^2)/(xln3))/(1-log_3x)^2

Explanation:

color(orange)"Reminders"

• d/dx(a^x)=a^xlna

• d/dx(log_ax)=1/(xlna)

"differentiate using the "color(blue)"quotient rule"

"Given " y=(g(x))/(h(x))" then"

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"

"g(x)=2^x-x^2rArrg'(x)=2^xln2-2x

h(x)=1-log_3xrArrh'(x)=-1/(xln3)

rArrdy/dx=((1-log_3x)(2^xln2-2x)-(2^x-x^2)(-1/(xln3)))/(1-log_3x)^2