How do you differentiate y= 3^(2x+7)y=32x+7?

1 Answer
Mar 30, 2015

Use d/(dx)(a^x)=a^x ln addx(ax)=axlna together with the chain rule:

d/(dx)(f(u))=f'(u) (du)/(dx)

For y=3^(2x+7) we get:

(dy)/(dx) = 3^(2x+7) ln3 (2) =2(3^(2x+7) ) ln3

Or use 2ln3=ln9 to write:

(dy)/(dx) = 3^(2x+7) ln9