How do you differentiate y=3^sinx?

1 Answer
Sep 24, 2016

y = 3^sinx

lny = ln(3^(sinx))

lny = sinxln3

1/y(dy/dx) = (cosx xx ln3 + 0 xx sinx)

dy/dx = (ln3cosx)/(1/y)

dy/dx = y xx ln3cosx

dy/dx = 3^sinx xx ln3cosx

dy/dx = 3^sinxln3cosx

Hopefully this helps!