How do you differentiate y=43^(sqrt(x))?

1 Answer
Dec 14, 2016

dy/dx = ( 43^sqrt(x)(ln43))/(2sqrt(x))

Explanation:

Take the natural logarithm of both sides.

lny = ln(43^sqrt(x))

lny = sqrt(x)(ln43)

Differentiate:

1/y(dy/dx) = 1/(2x^(1/2)) xx ln43 + sqrt(x)(0)

dy/dx = ((ln43)/(2x^(1/2)))/(1/y)

dy/dx = ( 43^sqrt(x)(ln43))/(2sqrt(x))

Hopefully this helps!