How do you differentiate y=5^((3x)/2)y=53x2?

1 Answer
Sep 11, 2016

(3 ln(5)) / (2) cdot 5^((3 x) / (2))3ln(5)253x2

Explanation:

We have: y = 5^((3 x) / (2))y=53x2

This function can be differentiated using the "chain rule".

Let u = (3 x) / (2) => u' = (3) / (2) and v = 5^(u) => v' = 5^(u) (ln(5)):

=> y' = (3) / (2) cdot 5^(u) (ln(5))

=> y' = (3 ln(5)) / (2) cdot 5^(u)

We can now replace u with (3 x) / (2):

=> y' = (3 ln(5)) / (2) cdot 5^((3 x) / (2))