How do you differentiate y=(e^(5x^4))/(e^(4x^2+3))y=e5x4e4x2+3?

1 Answer
Nov 29, 2016

Rewrite as y = e^(5x^4-4x^2-3)y=e5x44x23, then use d/dx(e^u) = e^u (du)/dxddx(eu)=eududx

Explanation:

An important property of exponents is a^n/a^m = a^(n-m)anam=anm

y = e^(5x^4)/e^(4x^2+3) = e^(5x^4-4x^2-3)y=e5x4e4x2+3=e5x44x23

y' = e^(5x^4-4x^2-3) * d/dx(5x^4-4x^2-3)

= (20x^3-8x)e^(5x^4-4x^2-3)