How do you differentiate y=e^(xsecx)+e^5?

1 Answer
Oct 22, 2017

(dy)/(dx)=[1+xtanx]secxe^(xsecx)

Explanation:

y=e^(xsecx)+e^5

we want

(dy)/(dx)=d/(dx)(e^(xsecx))+d/(dx)(e^5)

now

d/(dx)(e^5)=0

since" "e^5 is a constant

so that leaves us with

d/(dx)(e^(xsecx))

now by the chain rule we have the result

d/(dx)(e^(f(x)))=f'(x)e^(f(x))

but we also have he product rule to use

d/(dx)(uv)=v(du)/(dx)+u(dv)/(dx)

so putting all this together

(dy)/(dx)=d/(dx)(e^(xsecx))+d/(dx)(e^5)

=>(dy)/(dx)=[secxd/(dx)(x)+xd/(dx)(secx)]e^(xsecx)+0

:.(dy)/(dx)=[secx+xsecxtanx]e^(xsecx)

(dy)/(dx)=[1+xtanx]secxe^(xsecx)