How do you differentiate y= ln (x/(x-1))?
1 Answer
Explanation:
Using
color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnf(x))=1/(f(x)))color(white)(a/a)|))) combined with the
color(blue)" chain rule"
color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx[f(g(x))]=f'(g(x)).g'(x))color(white)(a/a)|)))color(green)" A"
"------------------------------------------------------------" here
f(g(x))=ln(x/(x-1))rArrf'(g(x))=1/(x/(x-1))=(x-1)/x and
g(x)=x/(x-1)rArrg'(x) = "see below"
"-----------------------------------------------------------"
To differentiate g(x) we require to use thecolor(blue)"quotient rule" If f(x)
=(g(x))/(h(x))" then " f'(x)=(h(x).g'(x)-g(x).h'(x))/(h(x)^2)color(green)"B"
"-----------------------------------------------------------------" here g(x) = x
rArrg'(x)=1 and h(x) = x-1
rArrh'(x)=1
"----------------------------------------------------------------"
Substitute these values intocolor(green)" B"
rArrf'(x)=((x-1).1-x.1)/(((x-1)^2))=(x-1-x)/(x-1)^2=(-1)/(x-1)^2
"------------------------------------------------------------"
Now this is the value of g'(x) that we set out to obtain from aboveFinally , 'plug' these all back into
color(green)"A"
rArrdy/dx=(x-1)/x xx(-1)/(x-1)^2
=cancel((x-1))/x xx(-1)/(cancel((x-1)) (x-1))=(-1)/(x(x-1))