How do you differentiate y= ln (x/(x-1))?

1 Answer
May 12, 2016

(-1)/(x(x-1)

Explanation:

Using color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnf(x))=1/(f(x)))color(white)(a/a)|)))

combined with the color(blue)" chain rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx[f(g(x))]=f'(g(x)).g'(x))color(white)(a/a)|)))color(green)" A"
"------------------------------------------------------------"

here f(g(x))=ln(x/(x-1))rArrf'(g(x))=1/(x/(x-1))=(x-1)/x

and g(x)=x/(x-1)rArrg'(x) = "see below"
"-----------------------------------------------------------"
To differentiate g(x) we require to use the color(blue)"quotient rule"

If f(x)=(g(x))/(h(x))" then " f'(x)=(h(x).g'(x)-g(x).h'(x))/(h(x)^2)color(green)"B"
"-----------------------------------------------------------------"

here g(x) = x rArrg'(x)=1

and h(x) = x-1 rArrh'(x)=1
"----------------------------------------------------------------"
Substitute these values into color(green)" B"

rArrf'(x)=((x-1).1-x.1)/(((x-1)^2))=(x-1-x)/(x-1)^2=(-1)/(x-1)^2
"------------------------------------------------------------"
Now this is the value of g'(x) that we set out to obtain from above

Finally , 'plug' these all back into color(green)"A"

rArrdy/dx=(x-1)/x xx(-1)/(x-1)^2

=cancel((x-1))/x xx(-1)/(cancel((x-1)) (x-1))=(-1)/(x(x-1))