How do you differentiate y= sqrt(x) e^(x^2) (x^2+3)^5?
1 Answer
Sep 10, 2017
Explanation:
I would use logarithmic differentiation.
lny = ln(sqrt(x)e^(x^2)(x^2 + 3)^5))
Using
lny = lnsqrt(x) + ln(e^(x^2)) + ln(x^2 + 3)^5
lny = lnx^(1/2) + ln(e^(x^2)) + ln(x^2 + 3)^5
Now we use
lny = 1/2lnx + x^2ln(e) + 5ln(x^2 + 3)
lny = 1/2lnx + x^2 + 5ln(x^2 +3)
Now the derivative is given by the chain rules and
1/y(dy/dx) = 1/(2x) + 2x + (5(2x))/(x^2 + 3)
dy/dx= y(1/(2x) + 2x + (10x)/(x^2 + 3))
dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))
Hopefully this helps!