How do you differentiate y= sqrt(x) e^(x^2) (x^2+3)^5?

1 Answer
Sep 10, 2017

dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))

Explanation:

I would use logarithmic differentiation.

lny = ln(sqrt(x)e^(x^2)(x^2 + 3)^5))

Using ln(ab) = ln(a) + ln(b).

lny = lnsqrt(x) + ln(e^(x^2)) + ln(x^2 + 3)^5

lny = lnx^(1/2) + ln(e^(x^2)) + ln(x^2 + 3)^5

Now we use lna^n = nlna.

lny = 1/2lnx + x^2ln(e) + 5ln(x^2 + 3)

lny = 1/2lnx + x^2 + 5ln(x^2 +3)

Now the derivative is given by the chain rules and d/dx(lnx) = 1/x.

1/y(dy/dx) = 1/(2x) + 2x + (5(2x))/(x^2 + 3)

dy/dx= y(1/(2x) + 2x + (10x)/(x^2 + 3))

dy/dx = (sqrt(x)e^(x^2)(x^2 + 3)^5)(1/(2x) + 2x + (10x)/(x^2 + 3))

Hopefully this helps!