How do you differentiate y = x^3*2^x?
1 Answer
Jan 3, 2017
Explanation:
y = x^3 2^x
Take Natural logs:
ln y = ln(x^3 2^x)
:. ln y = ln(x^3) + ln(2^x)
:. ln y = 3ln(x) + xln(2)
Differentiate Implicitly:
1/y dy/dx= 3/x + ln(2)
:. 1/(x^3 2^x) dy/dx= 3/x + ln(2)
:. dy/dx= (x^3 2^x){ 3/x + ln(2) }
:. dy/dx= 3x^2 2^x + x^3 2^xln(2)
You could also use the product rule