How do you differentiate y = x^3*2^x?

1 Answer
Jan 3, 2017

dy/dx= 3x^2 2^x + x^3 2^xln(2)

Explanation:

y = x^3 2^x

Take Natural logs:

ln y = ln(x^3 2^x)
:. ln y = ln(x^3) + ln(2^x)
:. ln y = 3ln(x) + xln(2)

Differentiate Implicitly:

1/y dy/dx= 3/x + ln(2)

:. 1/(x^3 2^x) dy/dx= 3/x + ln(2)

:. dy/dx= (x^3 2^x){ 3/x + ln(2) }
:. dy/dx= 3x^2 2^x + x^3 2^xln(2)

You could also use the product rule