How do you differentiate y = x^cos(3x)?

1 Answer
Oct 26, 2016

dy/dx= (cos(3x)/x -3sin(3x)lnx)x^cos(3x)

Explanation:

Take logs of both sides:

y = x^cos(3x)
:. lny = ln(x^cos(3x))
:. lny = cos(3x)lnx

The LHS can be differentiated simplicity, and the RHS can be differentiated using product rule; d/dx(uv)=u(dv)/dx+v(du)/dx

So, we have:
1/ydy/dx= cos(3x)d/dxlnx + lnxd/dxcos(3x)
:. 1/ydy/dx= cos(3x)1/x + (lnx)(-sin(3x))(3)
:. 1/ydy/dx= cos(3x)/x -3sin(3x)lnx
:. dy/dx= (cos(3x)/x -3sin(3x)lnx)y
:. dy/dx= (cos(3x)/x -3sin(3x)lnx)x^cos(3x)