How do you differentiate y=x^cosxy=xcosx?

1 Answer
Jun 6, 2015

y=x^cos(x)y=xcos(x)

Take logarithm of each side.
ln(y)=ln(x^cos(x))ln(y)=ln(xcos(x))

ln(y)=cos(x)ln(x)ln(y)=cos(x)ln(x)

Take derivative of each side

d/dx[ln(y)]=d/dx[cos(x)ln(x)]ddx[ln(y)]=ddx[cos(x)ln(x)]

1/ydy/dx=-sin(x)ln(x)+cos(x)/x1ydydx=sin(x)ln(x)+cos(x)x

dy/dx=y(-sin(x)ln(x)+cos(x)/x )dydx=y(sin(x)ln(x)+cos(x)x)

Substitute yy

dy/dx=x^cos(x)(-sin(x)ln(x)+cos(x)/x )dydx=xcos(x)(sin(x)ln(x)+cos(x)x)