How do you differentiate y = x ^ sqrt(x)y=xx?

1 Answer
Oct 5, 2016

dy/dx=1/2 x^(-1/2 + sqrt[x]) (2 + Log_e(x))dydx=12x12+x(2+loge(x))

Explanation:

y = x ^ sqrt(x)y=xx

Applying the loglog transformation ti both sides

log_ey=sqrt(x) log_e xlogey=xlogex so

dy/y = (1/2log_e x/sqrt(x)+sqrt(x)/x)dxdyy=(12logexx+xx)dx so

dy/dx = (1/2log_e x/sqrt(x)+sqrt(x)/x)y = (1/2log_e x/sqrt(x)+sqrt(x)/x)x^sqrt(x)dydx=(12logexx+xx)y=(12logexx+xx)xx

Finally

dy/dx=1/2 x^(-1/2 + sqrt[x]) (2 + Log_e(x))dydx=12x12+x(2+loge(x))