How do you find the 1st and 2nd derivative of e^(x^2)?

1 Answer
Jul 16, 2016

f'(x)=2xe^(x^2),f''(x)=2e^(x^2)(2x^2+1)

Explanation:

color(orange)"Reminder"

d/dx(e^x)=e^x" and " d/dx(e^(g(x)))=e^(g(x)).g'(x)

color(blue)"First derivative"

f(x)=e^(x^2)rArrf'(x)=e^(x^2).2x=2xe^(x^2)

color(blue)"Second derivative"

Differentiate using the color(red)"product rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))

Differentiating f'(x)=2xe^(x^2)

now g(x)=2xrArrg'(x)=2

and h(x)=e^(x^2)rArrh'(x)=2xe^(x^2)

rArrf''(x)=2x.2xe^(x^2)+2e^(x^2)=4x^2e^(x^2)+2e^(x^2)

=2e^(x^2)(2x^2+1)