How do you find the 1st and 2nd derivative of e^(x^2)?
1 Answer
Jul 16, 2016
Explanation:
color(orange)"Reminder"
d/dx(e^x)=e^x" and " d/dx(e^(g(x)))=e^(g(x)).g'(x)
color(blue)"First derivative"
f(x)=e^(x^2)rArrf'(x)=e^(x^2).2x=2xe^(x^2)
color(blue)"Second derivative" Differentiate using the
color(red)"product rule"
color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|))) Differentiating
f'(x)=2xe^(x^2) now
g(x)=2xrArrg'(x)=2 and
h(x)=e^(x^2)rArrh'(x)=2xe^(x^2)
rArrf''(x)=2x.2xe^(x^2)+2e^(x^2)=4x^2e^(x^2)+2e^(x^2)
=2e^(x^2)(2x^2+1)