How do you find the 1st and 2nd derivative of y=x^2e^x-4xe^x+2e^x?

1 Answer
Oct 20, 2016

dy/dx= e^x(x^2-2x-2) or x^2e^x-2xe^x-2e^x
:. (d^2y)/dx^2= e^x(x^2-4) or x^2e^x-4e^x

Explanation:

Use the product rule: d/dxuv= u(dv)/dx+v(du)/dx

So y = x^2e^x-4xe^x+2e^x
:. y = (x^2-4x+2)e^x

The product rule gives:

dy/dx= (x^2-4x+2)d/dxe^x+e^xd/dx(x^2-4x+2)
:. dy/dx= (x^2-4x+2)e^x+e^x(2x-4)
:. dy/dx= e^x(x^2-4x+2+2x-4)
:. dy/dx= e^x(x^2-2x-2)

Applying the product rule again:
(d^2y)/dx^2 = (x^2-2x-2)d/dxe^x+e^xd/dx(x^2-2x-2)
:. (d^2y)/dx^2= (x^2-2x-2)e^x+e^x(2x-2)
:. (d^2y)/dx^2= e^x(x^2-2x-2+2x-2)
:. (d^2y)/dx^2= e^x(x^2-4)