How do you find the derivative of (2e^(3x) + 2e^(-2x))^4?

1 Answer
Aug 14, 2017

4(2e^(3x)+2e^(-2x))^3(6e^(3x)-4e^(-2x))

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larr" chain rule"

f(g(x))=(2e^(3x)+2e^(-2x))^4

rArrf'(g(x))=4(2e^(3x)+2e^(-2x))^3

g(x)=2e^(3x)+2e^(-2x)

rArrg'(x)=2e^(3x).d/dx(3x)+2e^(-2x).d/dx(-2x)

color(white)(rArrg'(x))=6e^(3x)-4e^(-2x)

rArrdy/dx=4(2e^(3x)+2e^(-2x))^3(6e^(3x)-4e^(-2x))