How do you find the derivative of 2e^(sqrtx)2ex?

1 Answer
Jun 26, 2016

= e^(sqrtx) /(sqrtx)=exx

Explanation:

using the chain rule you know that (alpha e^{f(x)} )'= alpha f'(x) e^{f(x)}

or you can see for yourself by noting that if

y = alpha e^{f(x)}

then

y/alpha = e^{f(x)}

and

ln(y/alpha) = f(x)

so (ln(y/alpha))' = f'(x)

ie 1/ (y/alpha) (1/alpha) y' = f'(x)

so y' = (y f'(x) ) = alpha f'(x) e^{f(x)}

here that means that

(2e^(sqrtx))' = 2e^(sqrtx) * (sqrtx)'

= 2e^(sqrtx) * 1/2 1/(sqrtx)

= e^(sqrtx) /(sqrtx)