How do you find the derivative of 2e^-x2ex?

1 Answer
Oct 31, 2016

(dy)/(dx)=-2e^-xdydx=2ex

Explanation:

Recall that d/dxe^x=e^xddxex=ex

Using chain rule, (dy)/(dx)=(dy)/(du)*(du)/(dx)dydx=dydududx,

Let u=-xu=x

(dy)/(du)=d/(du)2e^u=2e^u=2e^-xdydu=ddu2eu=2eu=2ex

(du)/(dx)=d/(dx)-x=-1dudx=ddxx=1

:.(dy)/(dx)=-1*2e^-x=-2e^-x