How do you find the derivative of (7e^x)/(2e^x+1)7ex2ex+1?

1 Answer
Jun 4, 2016

d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(14e^(2x)*l n(e))/(2e^2+1)^2ddx[7ex2ex+1]=7exln(e)2ex+114e2xln(e)(2e2+1)2

Explanation:

d/(d x)[(7e^x)/(2e^x+1)]=?ddx[7ex2ex+1]=?

((7e^x)^'*(2e^x+1)-(2e^x+1)^' *7e^x)/((2e^x+1)^2)

=[7e^x*l n (e)*(2e^x+1)- ( 2*e^x * l n (e)*7e^x)]/(2e^x+1)^2

d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(7e^x*2e^x*l n(e))/(2e^2+1)^2

d/(d x)[(7e^x)/(2e^x+1)]=(7 e^x*l n(e))/(2e^x+1)-(14e^(2x)*l n(e))/(2e^x+1)^2