How do you find the derivative of e^x * e^(2x) * e^(3x) * e^(4x)?

1 Answer
May 17, 2016

d/dx e^x*e^(2x)*e^(3x)*e^(4x) =10e^(10x)

Explanation:

Using the property that a^x*a^y = a^(x+y) along with that d/dx e^x=e^x and the chain rule, we have

d/dx e^x*e^(2x)*e^(3x)*e^(4x) = d/dx e^(x+2x+3x+4x)

=d/dxe^(10x)

=e^(10x)(d/dx10x)
(Using the chain rule with the functions e^x and 10x)

=10e^(10x)