How do you find the derivative of f(x)= (x^3)(e^(2x))f(x)=(x3)(e2x)?

1 Answer
Mar 31, 2018

dy/dx = x^2e^{2x}(3+2x)dydx=x2e2x(3+2x)

Explanation:

Product rule

d/dx[uv] = {du}/dx v + {dv}/dx uddx[uv]=dudxv+dvdxu

u=x^3u=x3
v=e^{2x}v=e2x

dy/dx = d/dx[x^3]e^{2x}+d/dx[e^{2x}]x^3dydx=ddx[x3]e2x+ddx[e2x]x3

dy/dx = 3x^2e^{2x}+2e^{2x}x^3dydx=3x2e2x+2e2xx3

dy/dx = x^2e^{2x}(3+2x)dydx=x2e2x(3+2x)