How do you find the derivative of g(t)=e^(-3/t^2)g(t)=e−3t2?
1 Answer
Dec 27, 2017
Explanation:
"differentiate using the "color(blue)"chain rule"
"given "g(t)=f(h(t))" then"
g'(t)=f'(h(t))xxh'(t)larrcolor(blue)"chain rule"
g(t)=e^(-3/t^2)
rArrg'(t)=e^(-3/t^2)xxd/dt(-3/t^2)
d/dt(-3/t^2)=d/dt(-3t^-2)
=6t^-3=6/t^3
rArrg'(t)=e^(-3/t^2)xx6/t^3
color(white)(rArrg'(t))=(6e^(-3/t^2))/t^3