How do you find the derivative of g(t)=e^(-3/t^2)g(t)=e3t2?

1 Answer
Dec 27, 2017

g'(t)=(6e^(-3/t^2))/(t^3)

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "g(t)=f(h(t))" then"

g'(t)=f'(h(t))xxh'(t)larrcolor(blue)"chain rule"

g(t)=e^(-3/t^2)

rArrg'(t)=e^(-3/t^2)xxd/dt(-3/t^2)

d/dt(-3/t^2)=d/dt(-3t^-2)

=6t^-3=6/t^3

rArrg'(t)=e^(-3/t^2)xx6/t^3

color(white)(rArrg'(t))=(6e^(-3/t^2))/t^3