How do you find the derivative of sinx/e^x?
1 Answer
Feb 8, 2017
Explanation:
differentiate using the
color(blue)"quotient rule"
"Given "f(x)=(g(x))/(h(x))" then"
color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))to(A)
"here " f(x)=(sinx)/e^x
g(x)=sinxrArrg'(x)=cosx
"and "h(x)=e^xrArrh'(x)=e^x Substituting these values into (A)
f'(x)=(e^x(cosx)-sinx(e^x))/e^(2x)
rArrf'(x)=(e^x(cosx-sinx))/e^(2x)=(cosx-sinx)/e^x