How do you find the derivative of x^(2 lnx)?

1 Answer
Apr 15, 2018

y'=4x^(2lnx)lnx/x

Explanation:

y=x^(2lnx)

by taking the natural logarithm to both sides

lny=lnx^(2lnx)

using the properties of the logarithmic functions
color(green) (lnu^v=vlnu)

lny=2lnx*lnx

lny =2(lnx)^2

Differentiate

(y')/y=4lnx/x

y'=4ylnx/x

Substitute for y

y'=4x^(2lnx)lnx/x