How do you find the derivative of #x/(e^(2x))#?
2 Answers
Mar 18, 2018
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"Given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=xrArrg'(x)=1#
#h(x)=e^(2x)rArrh'(x)=e^(2x)xxd/dx(2x)=2e^(2x)#
#rArrd/dx(x/(e^(2x)))#
#=(e^(2x)-2xe^(2x))/(e^(2x))^2#
#=(e^(2x)(1-2x))/(e^(2x))^2=(1-2x)/(e^(2x))#
Mar 18, 2018
Explanation:
we can arrange this function so that we can use the product rule
the product rule