How do you find the derivative of x^(sinx)?
1 Answer
Nov 17, 2016
d/dx x^sinx= x^sinx((sinx)/x -cosxlnx)
Explanation:
Let
Then
:. lny = (sinx)lnx
Differentiating implicitly and applying the product rule:
1/ydy/dx=(sinx)(1/x) + (-cosx)(lnx)
1/ydy/dx=(sinx)/x -cosxlnx
dy/dx=y((sinx)/x -cosxlnx)
dy/dx=x^sinx((sinx)/x -cosxlnx)