How do you find the derivative of x^(sinx)?

1 Answer
Nov 17, 2016

d/dx x^sinx= x^sinx((sinx)/x -cosxlnx)

Explanation:

Let y = x^sinx

Then ln y = ln(x^sinx)

:. lny = (sinx)lnx

Differentiating implicitly and applying the product rule:

1/ydy/dx=(sinx)(1/x) + (-cosx)(lnx)
1/ydy/dx=(sinx)/x -cosxlnx
dy/dx=y((sinx)/x -cosxlnx)
dy/dx=x^sinx((sinx)/x -cosxlnx)