How do you find the derivative of #y=e^(2x^2+2x)#?

1 Answer
Apr 14, 2018

#d/dxe^(2x^2+2x)=(4x+2)e^(2x^2+2x)#

Explanation:

This problem will require an application of the Chain Rule which, when applied to #e# raised to the power of some function #u,# tells us that

#d/dxe^u=e^u*(du)/dx#

Here, #u=2x^2+2x,# so we have

#d/dxe^(2x^2+2x)=e^(2x^2+2x)*d/dx(2x^2+2x)#

#d/dx(2x^2+2x)=4x+2#, so we end up with

#d/dxe^(2x^2+2x)=(4x+2)e^(2x^2+2x)#