How do you find the derivative of y=e^(2x^2+2x)?

1 Answer
Apr 14, 2018

d/dxe^(2x^2+2x)=(4x+2)e^(2x^2+2x)

Explanation:

This problem will require an application of the Chain Rule which, when applied to e raised to the power of some function u, tells us that

d/dxe^u=e^u*(du)/dx

Here, u=2x^2+2x, so we have

d/dxe^(2x^2+2x)=e^(2x^2+2x)*d/dx(2x^2+2x)

d/dx(2x^2+2x)=4x+2, so we end up with

d/dxe^(2x^2+2x)=(4x+2)e^(2x^2+2x)