How do you find the derivative of y=e^(3x+4)?

1 Answer
Apr 9, 2018

3e^(3x+4)

Explanation:

Given: y=e^(3x+4)

Use the chain rule, which states that,

dy/dx=dy/(du)*(du)/dx

Let u=3x+4,:.du=3 \ dx,(du)/dx=3.

Here, y=e^u,:.dy=e^u \ du,dy/(du)=e^u.

Multiplying those results together, we get,

dy/dx=e^u*3

=3e^u

Substituting back u=3x+4, we get,

=3e^(3x+4)