How do you find the derivative of y=ln((1+e^x)/(1-e^x))?

1 Answer
Dec 17, 2016

dy/dx= (2e^x)/((1 + e^x)(1 - e^x)) = (2e^x)/(1 - e^(2x))

Explanation:

Let y= lnu and u = (1 + e^x)/(1 - e^x).

Then dy/(du) = 1/u and (du)/dx = (e^x(1 - e^x) - (-e^x(1 + e^x)))/(1 - e^x)^2

dy/dx = dy/(du) xx (du)/dx

dy/dx = 1/u xx (e^x - e^(2x) + e^x + e^(2x))/(1 - e^x)^2

dy/dx= 1/u xx (2e^x)/(1 - e^x)^2

dy/dx = (2e^x)/((1 + e^x)/(1 - e^x)) xx 1/(1 - e^x)^2

dy/dx = (2e^x(1 - e^x))/((1 + e^x)(1 - e^x)^2)

dy/dx= (2e^x)/((1 + e^x)(1 - e^x))

Hopefully this helps!