How do you find the derivative of y = x^2 e^(-x)?

2 Answers
Jul 6, 2016

dy/dx=xe^-x(2-x).

Explanation:

y=x^2e^-x
:. dy/dx=x^2*d/dx(e^-x)+e^-x*d/dxx^2.... [Product Rule for Diffn.]
=x^2*e^-x*d/dx(-x)+e^-x*2x...................[Chain rule]
=-x^2e^-x+2x*e^-x=xe^-x(2-x).

Jul 6, 2016

xe^(-x)(2-x)

Explanation:

Differentiate using the color(blue)"product rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))

here g(x)=x^2rArrg'(x)=2x

and h(x)=e^(-x)rArrh'(x)=e^(-x) (-1)=-e^(-x)
"-------------------------------------------------------------------"
Substitute these values into f'(x)

f'(x)=x^2(-e^(-x))+e^(-x)(2x)=-x^2e^(-x)+2xe^(-x)

rArrdy/dx=xe^(-x)(2-x)