y=e^{-x^2}
dy/dx=d/dx[e^{-x^2}]
{d^2y}/{dx^2} = d/dx[d/dx[e^{-x^2}]]
let u=-x^2
d/dx[e^{-x^2}]=d/{du}[e^u]d/dx[-x^2]
d/dx[e^{-x^2}]=e^u times -2x
d/dx[e^{-x^2}]=-2xe^{-x^2}
--
{d^2y}/{dx^2} = d/dx[-2xe^{-x^2} ]
Product rule:
{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x d/dx[e^{-x^2}]
From earlier: d/dx[e^{-x^2}]=-2xe^{-x^2}
{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x(-2xe^{-x^2} )
d/dx[-2x] = -2
{d^2y}/{dx^2} = -2e^{-x^2} + 4x^2e^{-x^2}
{d^2y}/{dx^2} = 4x^2e^{-x^2}-2e^{-x^2}