How do you find the first and second derivative of y=e^(-x^2)?

1 Answer
Apr 14, 2018

dy/dx = -2xe^{-x^2}

{d^2y}/{dx^2} = 4x^2e^{-x^2}-2e^{-x^2}

Explanation:

y=e^{-x^2}

dy/dx=d/dx[e^{-x^2}]

{d^2y}/{dx^2} = d/dx[d/dx[e^{-x^2}]]

let u=-x^2

d/dx[e^{-x^2}]=d/{du}[e^u]d/dx[-x^2]

d/dx[e^{-x^2}]=e^u times -2x

d/dx[e^{-x^2}]=-2xe^{-x^2}

--

{d^2y}/{dx^2} = d/dx[-2xe^{-x^2} ]

Product rule:

{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x d/dx[e^{-x^2}]

From earlier: d/dx[e^{-x^2}]=-2xe^{-x^2}

{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x(-2xe^{-x^2} )

d/dx[-2x] = -2

{d^2y}/{dx^2} = -2e^{-x^2} + 4x^2e^{-x^2}

{d^2y}/{dx^2} = 4x^2e^{-x^2}-2e^{-x^2}