What is the derivative of 5^(-1/x)51x?

1 Answer
Jan 17, 2017

Use logarithmic differentiation to obtain the answer:
dy/dx = ln(5)5^(-1/x)/x^2dydx=ln(5)51xx2

Explanation:

Let y = 5^(-1/x)y=51x

Use the natural logarithm on both sides:

ln(y) = ln(5^(-1/x))ln(y)=ln(51x)

On the right, use the property ln(a^b) = (b)ln(a)ln(ab)=(b)ln(a):

ln(y) = (-1/x)ln(5) = -ln(5)/xln(y)=(1x)ln(5)=ln(5)x

Differentiate both sides:

(d(ln(y)))/dx = (d(-ln(5)/x))/dxd(ln(y))dx=d(ln(5)x)dx

1/ydy/dx = ln(5)/x^21ydydx=ln(5)x2

Multiply both sides by y:

dy/dx = ln(5)y/x^2dydx=ln(5)yx2

Substitute 5^(-1/x)51x for y:

dy/dx = ln(5)5^(-1/x)/x^2dydx=ln(5)51xx2