What is the derivative of ((8^x)^5)^x((8x)5)x?

1 Answer
Jun 10, 2016

10x((8^x)^5)^x ln810x((8x)5)xln8

Explanation:

((8^x)^5)^x = 8^(5x^2)((8x)5)x=85x2.

So,

d/dx(((8^x)^5)^x ) = d/dx(8^(5x^2))ddx(((8x)5)x)=ddx(85x2).

Now use d/dx(8^u) = 8^u lnu d/dx(u)ddx(8u)=8ulnuddx(u) to get

d/dx(8^(5x^2)) = 8^(5x^2) ln8 d/dx(5x^2)ddx(85x2)=85x2ln8ddx(5x2)

= 8^(5x^2) ln8 (10x)=85x2ln8(10x)

= 10x 8^(5x^2) ln8=10x85x2ln8