f(x) = e^(sin(x^2))f(x)=esin(x2)
f(x) = e^(g(x))f(x)=eg(x) Where g(x)= sin(x^2)g(x)=sin(x2)
f'(x) = d/dx e^(g(x)) = e^(g(x))* g'(x) By the Chain Rule
f'(x) = e^(sin(x^2)) * cos (x^2) * d/dx x^2 By the Chain Rule again
f'(x) = e^(sin(x^2)) * cos (x^2) * 2x
f'(x) = 2xe^(sin(x^2))cos(x^2)