What is the derivative of e^sin(x^2)esin(x2)?

1 Answer
Nov 18, 2016

2xe^(sin(x^2))cos(x^2)2xesin(x2)cos(x2)

Explanation:

f(x) = e^(sin(x^2))f(x)=esin(x2)

f(x) = e^(g(x))f(x)=eg(x) Where g(x)= sin(x^2)g(x)=sin(x2)

f'(x) = d/dx e^(g(x)) = e^(g(x))* g'(x) By the Chain Rule

f'(x) = e^(sin(x^2)) * cos (x^2) * d/dx x^2 By the Chain Rule again

f'(x) = e^(sin(x^2)) * cos (x^2) * 2x

f'(x) = 2xe^(sin(x^2))cos(x^2)